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The Cascade Model

Small and large earthquakes nucleate in the same way

There is some probability that a given earthquake will grow large,
but size Is unpredictable ahead of time




The Cascade Model

Small and large earthquakes nucleate in the same way

There is some probability that a given earthquake will grow large,
but size Is unpredictable ahead of time

- Distribution of stress heterogeneities determines size of
mainshock, not characteristics of triggering event
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The Basics of Earthquake Forecasting
The Statistical Seismologist’s Approach
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These scaling laws are used in short-term forecasting models
ike ETAS (Ogata, 1988) and STEP (Gerstenberger et al., 2005)



Alternatives to cascade model

Pre-slip

Preslip Model
Before Shaking _ _ _
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/

(Final Failure of Pre-Slip Zone)

figure from Vidale et al. (2001)

Foreshocks result from aseismic
slip in the nucleation zone of
future large earthquake



Alternatives to cascade model

Pre-slip

Preslip Model
Before Shaking _ _ _
Begins - 2
/

(Final Failure of Pre-Slip Zone)

figure from Vidale et al. (2001)

Foreshocks result from aseismic
slip in the nucleation zone of
future large earthquake
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Hardebeck et al. (2008)
showed the hypothesis was
statistically insignificant

(ETAS catalogs can produce
just as much apparent
acceleration)



Alternatives to cascade model

Pre-slip

Preslip Model
Before Shaking _ _ _
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figure from Vidale et al. (2001)

Foreshocks result from aseismic Hardebeck et al. (2008)
slip in the nucleation zone of showed the hypothesis was
future large earthquake statistically insignificant

Unlike cascade model, these models hypothesize that foreshocks
are “different” from other earthquakes and are predictive of future
earthquake size



Cascade Model Predictions

The foreshock rate and the aftershock rate follow the same trend /
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Cascade Model Predictions

The magnitude distribution of foreshocks is uniform ¢

| UMA data
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Cascade Model Predictions

Apparent decrease in b-value prior to mainshocks v

Larger earthquakes are more
likely to trigger an earthquake
than smaller earthquakes
(lobecause they trigger more
earthquakes), so the
conditional magnitude
distribution prior to stacked

g, S ETAS “mainshocks” has a lower b-

7z L
Observed data (stack) \ predictions
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Helmstetter et al. (2003)



No significant correlation between number of
foreshocks and mainshock size
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Cascade Model Predictions

No significant correlation between toreshock v
area and mainshock size
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Recent Challenges to the Cascade Model

Bouchon et al. (2013) Brodsky and Lay (2014)
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Inverse Omori Acceleration

The Omori Law predicts “acceleration” in stacked foreshock
seguences

randomly
selected times
from Omori rate

distribution



Inverse Omori Acceleration

The Omori Law predicts “acceleration” in stacked foreshock
seguences

B) Cumulative Stack of Triggering Times

A) 5 Randomly Selected Event Times following Omori Deca:
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Normalized Aftershock Rate

Inverse Omori Acceleration

The Omori Law predicts “acceleration” in stacked foreshock
seguences

A) 5 Randomly Selected Event Times following Omori Decay B) Cumulative Stack of Triggering Times C) Cumulative Stack of Triggering Times
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Inverse Omori Acceleration

The Omori Law predicts “acceleration” in stacked foreshock
seguences

Helmstetter et al. (2003)

Normalized Aftershock Rate
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Inverse Omori Acceleration

ETAS models can match the acceleration
seen in Bouchon et al. (2014) dataset

A) Normalized 150-Day Stack B) Normalized 5-Day Stack
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The cascade model predicts that the same
amount of inverse Omori acceleration should
be seen before earthquakes of any size

A) Foreshocks for Random Control Earthquakes and

B) Foreshocks for Random Control Earthquakes and
BDMKS Mainshock Data

BDMKS Mainshock Data (M=3)
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Indeed, the acceleration before small earthquakes is similar

(if you correct for completeness problems in the Bouchon et al. (2014) dataset)

Felzer, Page and Michael (2015)
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Slow slip & seismicity migration may indeed
happen, but does that imply predictability
for mainshock size”

A wealth of data
supporting foreshock
scaling laws
suggests no.

ay

Brodsky and Lay (2014)



Slow slip & seismicity migration may indeed
happen, but does that imply predictability
for mainshock size”

A wealth of data
supporting foreshock
scaling laws
suggests no.
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. " Foreshocks do contain
Brodsky and Lay (2014) oredictive power, but
not about the size of
the mainshock.



Foreshocks are not predictive of mainshock
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What do changing earthquake probabilities ook like In
time”/

M=6 Event times
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Even though foreshocks are not predictive of earthquake size, foreshock/
aftershock statistics can give orders of magnitude changes in the probabilities

for future earthquakes of all sizes.



How big are the probability gains in ETAS?

M = 2.5 gains following M 7.1 Hayward Fault event
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Well-characterized scaling relations imply:
~ b-value anomalies and inverse Omori acceleration for stacked foreshocks

~ Probability gains of 100-1000 on time scales of a day

B) Foreshocks for Random Control Earthquakes and
BDMKS Mainshock Data (M=3)
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ETAS is an excellent null hypothesis that explains a large amount of the
observed predictability in the data



Deviations from ETAS?

Foreshock and Aftershock Productivity as a Function of
Differential Magnitude

As noticed by Brodsky (2011) and Shearer (2012), mainshocks in California have twice as many
foreshocks as ETAS prediction

But this effect is only seen for smaller mainshocks!
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Green lines show 28-year observed catalog in California
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Page and van der Elst (2018)



Deviations from ETAS?

Foreshock and Aftershock Productivity as a Function of
Differential Magnitude

As noticed by Brodsky (2011) and Shearer (2012), mainshocks in California have twice as many
foreshocks as ETAS prediction

But this effect is only seen for smaller mainshocks!
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ETAS models that use one set of direct Omori parameters have less
aftershock productivity variability than observed catalog

Page and van der Elst (2018)



Deviations from ETAS?

Direct Omori parameters are likely close to critical (very little
“background”)

Including the effect of “orphaned” aftershocks is important
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ETAS captures much of the predictability in seismicity

M=2.5 rate = proxy for large event probability
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By better estimating parameters & modeling variations, we can further
iIncrease probability gains



